DapBCH: a disease association prediction model Based on Cross-species and Heterogeneous graph embedding

نویسندگان

چکیده

The study of comorbidity can provide new insights into the pathogenesis disease and has important economic significance in clinical evaluation treatment difficulty, medical expenses, length stay, prognosis disease. In this paper, we propose a association prediction model DapBCH, which constructs cross-species biological network applies heterogeneous graph embedding to predict association. First, combine human disease–gene network, mouse gene–phenotype human–mouse homologous gene protein–protein interaction reconstruct network. Second, apply based on meta-path aggregation generate feature vector nodes. Finally, employ link obtain similarity pairs. experimental results indicate that our is highly competitive predicting promising for finding potential associations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction

Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an importa...

متن کامل

Graph Embedding aided Relationship Prediction in Heterogeneous Networks

We consider the problem of predicting relationships in largescale heterogeneous networks. For example, one can try to predict if a researcher will publish at a conference (eg: VLDB) given her previous publications, or try to anticipate if two reputed researchers working in the same area will collaborate. The main challenge is to extract latent information from such real-world networks which are...

متن کامل

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Cross-view Graph Embedding

Recently, more and more approaches are emerging to solve the cross-view matching problem where reference samples and query samples are from different views. In this paper, inspired by Graph Embedding, we propose a unified framework for these cross-view methods called Cross-view Graph Embedding. The proposed framework can not only reformulate most traditional cross-view methods (e.g., CCA, PLS a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Genetics

سال: 2023

ISSN: ['1664-8021']

DOI: https://doi.org/10.3389/fgene.2023.1222346